
The Representation and Matching of

Categorical Shape

Ali Shokoufandeh
Lars Bretzner
Diego Macrini
M. Fatih Demirci
Clas Jönsson

and
Sven Dickinson

Technical Report DU-CS-05-10
Department of Computer Science

Drexel University
Philadelphia, PA 19104

July, 2005

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
The Representation and Matching of Categorical Shape

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Drexel University,Department of Computer
Science,Philadelphia,PA,19104

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We present a framework for categorical shape recognition. The coarse shape of an object is captured by a
multiscale blob decomposition, representing the compact and elongated parts of an object at appropriate
scales. These parts, in turn, map to nodes in a directed acyclic graph, in which edges encode both semantic
relations (parent/child or sibling) as well as geometric relations. Given two image descriptions each
represented as a directed acyclic graph, we draw on spectral graph theory to derive a new algorithm for
computing node correspondence in the presence of noise and occlusion. In computing correspondence, the
similarity of two nodes is a function of their topological (graph) contexts, their geometric (relational)
contexts and their node contents. We demonstrate the approach on the domain of view-based 3-D object
recognition.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

42

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The Representation and Matching of

Categorical Shape

Ali Shokoufandeh a Lars Bretzner b Diego Macrini c

M. Fatih Demirci a Clas Jönsson b Sven Dickinson c

aDepartment of Computer Science, Drexel University,

Philadelphia, PA 19104, USA

bComputational Vision and Active Perception Laboratory,

Department of Numerical Analysis and Computer Science,

KTH, Stockholm, Sweden

cDepartment of Computer Science, University of Toronto,

Toronto, Ontario, Canada M5S 3G4

Preprint submitted to Elsevier Science 18 July 2005

Abstract

We present a framework for categorical shape recognition. The coarse shape of an

object is captured by a multiscale blob decomposition, representing the compact

and elongated parts of an object at appropriate scales. These parts, in turn, map

to nodes in a directed acyclic graph, in which edges encode both semantic relations

(parent/child or sibling) as well as geometric relations. Given two image descrip-

tions, each represented as a directed acyclic graph, we draw on spectral graph theory

to derive a new algorithm for computing node correspondence in the presence of

noise and occlusion. In computing correspondence, the similarity of two nodes is a

function of their topological (graph) contexts, their geometric (relational) contexts,

and their node contents. We demonstrate the approach on the domain of view-based

3-D object recognition.

Key words: generic object recognition, shape categorization, graph matching,

scale spaces, spectral graph theory

2

1 Introduction

Object categorization has long been a goal of the object recognition commu-

nity, with notable early work by Binford [2], Marr and Nishihara [28], Agin and

Binford [1], Nevatia and Binford [31], and Brooks [4] attempting to construct

and recognize prototypical object models based on their coarse shape struc-

ture. However, the representational gap between low-level image features and

the abstract nature of the models was large, and the community lacked the

computational infrastructure required to bridge this representational gap [18].

Instead, images were simplified and objects were textureless, so that extracted

image features could map directly to salient model features. In the years to

follow, such generic object recognition systems gave way to exemplar-based

systems, first passing through highly constrained geometric (CAD) models,

and on to today’s generation of appearance-based models. Whether the im-

ages were moved closer to the models (earlier approaches) or the models moved

closer to the images (later approaches), the representational gap has remained

largely unaddressed.

The community is now returning to the problem of object categorization, us-

ing powerful machine learning techniques and new appearance-based features.

However, appearance-based representations are not invariant to significant

within-class appearance change, due to texture, surface markings, structural

detail, or articulation. As a result, the categories are often very restricted,

such as faces, cars, motorcycles, and specific species of animals. Accommo-

dating significant within-class shape variation puts significant demands on a

representation: 1) it must capture the coarse structure of an object; and 2) it

must be local, in order to accommodate occlusion, clutter and noise. These

3

criteria point to a structured shape description not unlike the ambitious part-

based recognition frameworks proposed in the 70’s and 80’s. However, the

representational gap facing these early systems still poses a major obstacle.

We begin by imposing a strong shape prior on the parts and relations making

up an object. Specifically, we represent a 2-D object view as a multiscale

blob decomposition, whose part vocabulary includes two types, compact blobs

and elongated ridges, and whose relations also include two types, semantic

(parent/child and sibling) and geometric. The detected qualitative parts and

and their relations are captured in a directed acyclic graph, called a blob graph,

in which nodes represent parts and edges capture relations.

Choosing a restricted vocabulary of parts helps us bridge the representational

gap. Early generation systems started with low-level features such as edges, re-

gions, and interest points, and were faced with the challenging task of grouping

and abstracting them to form high-level parts, such as generalized cylinders.

By severely restricting the part vocabulary, we construct a high-level part de-

tector from simple, multiscale filter responses. Although the parts are simple

and qualitative, their semantic and geometric relations add rich structure to

the representation, yielding a shape representation that can be used to dis-

criminate shape categories.

Any shortcut to extracting high-level part structure from low-level features,

such as filter responses, will be prone to error. Thus, the recovered blob graph

will be missing nodes/edges and will contain spurious nodes/edges, setting

up a challenging inexact graph matching problem. In our previous work on

matching rooted trees, [42], we drew on spectral graph theory to represent the

coarse “shape” of a tree as a low-dimensional vector based on the eigenvalues of

4

the tree’s symmetric adjacency matrix. Our matching algorithm utilized these

vectors in a coarse-to-fine matching strategy that found corresponding nodes.

Although successfully applied to shock trees, the matching algorithm suffered

from a number of limitations: 1) it could not handle the directed acyclic graph

structure found in, for example, our multiscale blob graphs, e.g., a blob may

have two parents; 2) it was restricted to matching hierarchical parent/child

relations, and could not accommodate sibling relations, e.g., the geometric

relations between blobs at a given scale; and 3) the matching algorithm was

an approximation algorithm that could not ensure that hierarchical and sibling

relations were preserved during matching, allowing, for example, two siblings

(sharing a parent) in one tree to match two nodes in the other tree having an

ancestor/descendant relationship.

We first extend our matching algorithm to handle directed acyclic graphs,

drawing on our recent work in indexing hierarchical structures [40], in which

we represent the coarse shape of a directed acyclic graph as a low-dimensional

vector based on the eigenvalues of the DAG’s antisymmetric adjacency matrix.

Next, we introduce a notion of graph neighborhood context, allowing us to ac-

commodate sibling relations, such as our blob graphs’ geometric relations, into

our matching algorithm. Like our vector encoding of hierarchical structure,

local sibling structure is also encoded in a low-dimensional vector. Finally,

we extend the matching algorithm to ensure that that both hierarchical and

sibling relations are enforced during matching, yielding improved correspon-

dence in the presence of noise and occlusion. The result is a far more powerful

matching framework that’s ideally suited to our multiscale blob graphs.

Following a review of related work in Section 2, we describe our qualitative

shape representation in Section 3. Next, we describe our new matching algo-

5

rithm in Section 4. In Section 5, we evaluate the approach on the domain of

view-based 3-D object recognition. We discuss the limitations of the approach

in Section 6, and draw conclusions in Section 7.

2 Related Work

There has been considerable effort devoted to both scale space theory and

hierarchical structure matching, although much less effort has been devoted to

combining the two paradigms. Coarse-to-fine image descriptions are plentiful,

including work by Burt [5], Lindeberg [26], Simoncelli et al. [43], Mallat and

Hwang [27], and Witkin and Tennenbaum [?]. Some have applied such models

to directing visual attention, e.g., Tsotsos [46], Jägersand [17], Olshausen et

al. [32], and Takac̀s and Wechsler [44]. Although such descriptions are well

suited for tasks such as compression, attention, or object localization, they

often lose the detailed shape information required for object recognition.

Others have developed multi-scale image descriptions specifically for matching

and recognition. Crowley and Sanderson [8,7,9] extracted peaks and ridges

from a Laplacian pyramid and linked them together to form a tree structure.

However, during the matching phase, little of the trees’ topology or geometry

was exploited to compute correspondence. Rao et al. [35] correlate a rigid,

multiscale saliency map of the target object with the image. However, like

any template-based approach, the technique is rather global, offering little

invariance to occlusion or object deformation. In an effort to accommodate

object deformation, Wiskott et al. apply elastic graph matching to a planar

graph whose nodes are wavelet jets. Although their features are multi-scale,

their representation is not hierarchical, and matching requires that the graphs

6

be coarsely aligned in scale and image rotation [48]. A similar approach was

applied to hand posture recognition by Triesch and von der Malsburg [45].

The representation of image features at multiple scales suggests a hierarchical

graph representation, which can accommodate feature attributes in the nodes

and relational attributes in the arcs. Although graph matching is a popular

topic in the computer vision literature [12], including both inexact and exact

graph matching algorithms, there is far less work on dealing with the matching

of hierarchical graphs, i.e., DAGs, in which lower (deeper) levels reflect less

saliency. Pelillo et al. [34] provided a solution for the matching of hierarchical

trees by constructing an association graph using the concept of connectivity

and solving a maximal clique problem in this new structure. The latter prob-

lem can be formulated as a quadratic optimization problem and they used

the so-called replicator dynamical systems developed in theoretical biology to

solve it. Pelillo [33] also generalized the framework for matching free trees and

using simple payoff-monotonic dynamics from evolutionary game theory. The

problem of matching hierarchical trees has also been studied in the context

of edit-distance (see, e.g., [38]). In such a setting, one seeks a minimal set of

re-labellings, additions, deletions, merges, and splits of nodes and edges that

transform one graph into another.

In recent work [10,11], we presented a framework for many-to-many matching

of hierarchical structures, where features and their relations were represented

using directed edge-weighted graphs. The method began with transforming

the graph into a metric tree. Next, using graph embedding techniques, the

tree was embedded into a normed vector space. This two-step transformation

allowed us to reduce the problem of many-to-many graph matching to a much

simpler problem of matching weighted distributions of points in a normed

7

vector space. To compute the distance between two weighted distributions,

we used a distribution-based similarity measure, known as the Earth Mover’s

Distance under transformation [6,37].

As mentioned in Section 1, object categorization has received renewed atten-

tion from the recognition community. In [14], Fergus et al. present a method

to learn and recognize object class models from unlabeled cluttered scenes

in a scale invariant manner. They deploy a probabilistic representation to si-

multaneously model shape, appearance, occlusion, and relative scale. They

also use expectation maximization for learning the parameters of the scale-

invariant object model and use this model in a Bayesian manner to classify

images. Fei-Fei et al. [13] improved this by proposing a method for learning

object categories from just a few training images. Their proposed method is

based on making use of priors to construct a generative probabilistic model,

assembled from object categories which were previously learned.

Lazebnik et al. [21] present a framework for the representation of 3-D objects

using multiple composite local affine parts. Specifically, these are 2D config-

urations of regions that are stable across a range of views of an object, and

also across multiple instances of the same object category. These compos-

ite representations provide improved expressiveness and distinctiveness, along

with added flexibility for representing complex 3-D objects. Leibe and Schiele

[23] propose a new database for comparing different methods for object cat-

egorization. The database contains high-resolution color images of 80 objects

from 8 different categories, for a total of 3280 images and was used to ana-

lyze the performance of several appearance and contour based methods. The

best reported method for categorization for this database is a combination of

both contour- and shape-based methods. This new generation of categoriza-

8

tion systems are primarily appearance-based, and therefore not well-equipped

to handle within-class deformations due to significant appearance change, ar-

ticulation, significant changes in minor geometric detail.

The closest integrated framework to that proposed here is due to Shokoufandeh

et al. [41], who match multiscale blob representations represented as directed

acyclic graphs. The multi-scale description in that work, due to Marsic [29],

excluded geometric relations among sibling nodes and did not include ridge

features. Moreover, the matching framework had to choose between two al-

gorithms, one targeting structural matching, while the other enforcing both

structural and geometrical graph alignment. Our proposed multiscale image

representation is far richer in terms of its underlying features, and resembles

that of Bretzner and Lindeberg [3], who explored qualitative, multi-scale hi-

erarchies for object tracking. Our matching framework, on the other hand,

offers several orders of magnitude less complexity, handles noise more effec-

tively, and can handle both structural and geometrical matching within the

same framework.

3 Building a Qualitative Shape Feature Hierarchy

3.1 Extracting Qualitative Shape Features

As mentioned in Section 1, our qualitative feature hierarchy represents an im-

age in terms of a set of blobs and ridges, captured at appropriate scales. The

representation is an extension of the work presented in [3]. Blob and ridge ex-

traction is performed using automatic scale selection, as described in previous

work (see [25] and [24]). We also extract a third descriptor, called the win-

9

(a) (b)

Fig. 1. Feature Extraction: (a) extracted blobs and ridges at appropriate scales; (b)
extracted features before and after removing multiple responses and linking ridges.

dowed second moment matrix, which describes the directional characteristics

of the underlying image structure.

A scale-space representation of the image signal f is computed by convolution

with Gaussian kernels g(·; t) of different variance t, giving L(·; t) = g(·; t) ∗

f(·). Blob detection aims at locating compact objects or parts in the image.

The entity used to detect blobs is the square of the normalized Laplacian

operator,

∇2
normL = t (Lxx + Lyy). (1)

Blobs are detected as local maxima in scale-space. Figure 1(a) shows an im-

age of a hand with the extracted blobs superimposed. A blob is graphically

represented by a circle defining a support region, whose radius is proportional

to
√

(t).

Elongated structures are localized where the multi-scale ridge detector

RnormL = t3/2 ((Lxx − Lyy)
2 + 4L2

xy) (2)

assumes local maxima in scale-space. Figure 1(a) also shows the extracted

ridges, represented as superimposed ellipses, each defining a support region,

10

with width proportional to
√

(t). To represent the spatial extent of a detected

image structure, a windowed second moment matrix

Σ =
∫

η∈R2

















L2
x LxLy

LxLy L2
y

















g(η; tint) dη (3)

is computed at the detected feature position and at an integration scale tint

proportional to the scale tdet of the detected image feature. There are two pa-

rameters of the directional statistics that we make use of here: the orientation

and the anisotropy, given from the eigenvalues λ1 and λ2 (λ1 > λ2) and their

corresponding eigenvectors ~eλ1
and ~eλ2

of Σ. The anisotropy is defined as

Q̃ =
1 − λ2/λ1

1 + λ2/λ1

, (4)

while the orientation is given by the direction of ~eλ1
.

To improve feature detection in scenes with poor intensity contrast between

the image object and background, we utilize color information. This is done

by extracting features in the R, G and B color bands separately, along with

the intensity image. Re-occurring features are awarded with respect to signifi-

cance. Furthermore, if we have advance information on the color of the object,

improvements can be achieved by weighting the significance of the features in

the color bands differently.

When constructing a feature hierarchy, we extract the N most salient image

features, ranked according to the response of the scale-space descriptors used

in the feature extraction process. From these features, a Feature Map is built

according to the following steps:

11

3.1.1 Merging multiple feature responses.

This step removes multiple overlapping responses originating from the same

image structure, the effect of which can be seen in Figure 1(a). To be able to

detect overlapping features, a measure of inter-feature similarity is needed. For

this purpose, each feature is associated with a 2-D Gaussian kernel g(~x, Σ),

where the covariance is given from the second moment matrix. When two fea-

tures are positioned near each other, their Gaussian functions will intersect.

The similarity measure between two such features is based on the disjunct

volume D of the two Gaussians [20]. This volume is calculated by integrat-

ing the square of the difference between the two Gaussian functions (gA, gB)

corresponding to the two intersecting features A and B:

D(A,B) =

√

|ΣA| + |ΣB|

2

∫

R2

(gA − gB)2dx. (5)

The disjunct volume depends on the differences in position, variance, scale and

orientation of the two Gaussians, and for ridges is more sensitive to translations

in the direction perpendicular to the ridge.

3.1.2 Linking ridges

The ridge detection will produce multiple responses on a ridge structure that is

long compared to its width. These ridges are linked together to form one long

ridge, as illustrated in Figure 1(b). The criteria for when to link two ridges is

based on two conditions: 1) they must be aligned, and 2) their support regions

must overlap. After the linking is performed, the anisotropy and support region

for the resulting ridge is re-calculated. The anisotropy is re-calculated from the

new length/width relationship as 1-(width of structure)/(length of structure).

12

3.2 Assembling the Features into a Graph

Once the Feature Map is constructed, the component features are assembled

into a directed acyclic graph. Associated with each node (blob/ridge) are a

number of attributes, including position, orientation, and support region. A

feature at the coarsest scale of the Feature Map is chosen as the root. Next,

finer-scale features that overlap with the root become its children through

hierarchical edges. These children, in turn, select overlapping features (again

through hierarchical edges) at finer scales to be their children, etc. ¿From the

unassigned features, the feature at the coarsest scale is chosen as a new root.

Children of this root are selected from unassigned as well as assigned features,

and the process is repeated until all features are assigned to a graph. A child

node can therefore have multiple parents. To yield a single rooted graph, which

is needed in the matching step, a virtual top root node is inserted as the parent

of all root nodes in the image.

Associated with each edge are a number of important geometric attributes.

For an edge E , directed from a vertex VA representing feature FA, to a vertex

VB representing feature FB, we define the following attributes, as shown in

Figure 2:

• Distance. Two measures of inter-feature distance are associated with the

edge: 1) the smallest distance d from the support region of FA to the support

region of FB, normalized to the the largest of the radii rA and rB; and 2)

the distance between their centers normalized to the radius rA of FA in the

direction of the distance vector between their centers.

• Relative orientation. The relative orientation between FA and FB.

13

r

Feature

Feature

d
B

A

r

B

A

rA Feature B

AFeature

d

relative orientation

φ

Feature B

Feature A

(a) (b) (c) (d)

Fig. 2. The four edge relations: (a,b) two normalized distance measures, (c) relative
orientation, and (d) bearing

Fig. 3. Example graph of a hand image, with the hierarchical edges shown in green.

• Bearing. The bearing of a feature FB, as seen from a feature FA, is defined

as the angle of the distance vector xB − xA with respect to the orientation

of A measured counter-clockwise.

• Scale ratio. The scale invariant relation between FA and FB is a ratio

between scales tFA
and tFB

.

An example of a blob graph for a hand image, showing hierarchical edges, is

shown in Figure 3.

14

4 Matching Problem Formulation

Given two images and their corresponding feature map graphs, G1 = (V1, E1)

and G2 = (V1, E1), with |V1| = n1 and |V2| = n2, we seek a method for com-

puting their similarity. In the absence of noise, segmentation errors, occlusion,

and clutter, computing the similarity of G1 and G2 could be formulated as a

label-consistent graph isomorphism problem. However, under normal imaging

conditions, there may not exist significant subgraphs common to G1 and G2.

We therefore seek an approximate solution that captures both the structural

and geometrical similarity of G1 and G2 as well as corresponding node sim-

ilarity. Structural similarity is a domain-independent measure that accounts

for similarity in the “shapes” of two graphs, in terms of numbers of nodes,

branching factor distributions, etc. Geometrical similarity, on the other hand,

accounts for consistency in the relative positions, orientations, and scales of

nodes in the two graphs. In the following subsections, we describe these two

signatures and combine them in an efficient algorithm to match two blob

graphs.

4.1 Encoding Graph Structure

As described in Section 1, our previous work on rooted tree matching drew

on the eigenvalues of a tree’s symmetric {0, 1} adjacency matrix to encode

the “shape” of a tree using a low-dimensional vector. The eigenvalues of a

graph’s adjacency matrix characterize the graph’s degree distribution, an im-

portant structural property of the graph. In extending that approach to DAG

matching, we first draw on our recent work in indexing hierarchical (DAG)

15

structures [40], in which the magnitudes of the eigenvalues of a DAG’s an-

tisymmetric {0, 1,−1} adjacency matrix 1 are used to encode the shape of

a DAG using a low-dimensional vector. Moreover, in [40], we show that the

eigenvalues are invariant to minor structural perturbation of the graph due to

noise and occlusion.

Let’s briefly review the construction of our graph abstraction; details can be

found in [40]. Let D be a DAG whose maximum branching factor is ∆(D),

and let the subgraphs of its root be D1,D2, . . . , DS, as shown in Figure 4. For

each subgraph, Di, whose root degree is δ(Di), we compute the magnitudes of

the (complex) eigenvalues of Di’s submatrix, sort the magnitudes in decreasing

order, and let Si be the sum of the δ(Di)−1 largest magnitudes. The sorted Si’s

become the components of a ∆(D)-dimensional vector assigned to the DAG’s

root. If the number of Si’s is less than ∆(D), then the vector is padded with

zeroes. We can recursively repeat this procedure, assigning a vector to each

nonterminal node in the DAG, computed over the subgraph rooted at that

node. We call each such vector a topological signature vector, or TSV. The

TSV assigned to a node allows the structural context of the node (i.e., the

subgraph rooted at the node) to be encapsulated in the node as an attribute.

4.2 Encoding Graph Geometry

The above encoding of structure suffers from the drawback that it does not

capture the geometry of the nodes. For example, two graphs with identical

structure may differ in terms of the relative positions of their nodes, the rela-

1 A matrix with 1’s (-1’s) indicating a forward (backward) edge between adjacent
nodes in the graph (and 0’s on the diagonal).

16

r

�

�

�

�

�
�

ik21

���
Si +++= �

�����	

�����

��������	

�����

nSSSS ≥≥≥≥ �312

�� ����
�������
�

()0,,,,,TSV(r) 312 nSSSS �=

�� ���

�����������
���������

�� ��
����
�������
��� �� ��

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

��

�

�

�

�

Fig. 4. Forming the structural signature.

tive orientations of their nodes (for elongated nodes), and the relative scales of

their nodes. Just as we derived a topological signature vector, which encodes

the “neighborhood” structure of a node, we now seek an analogous “geomet-

rical signature vector”, which encodes the neighborhood geometry of a node.

This geometrical signature will be combined with our new topological sig-

nature in a new algorithm that computes the distance between two directed

acyclic graphs and preserves hierarchical and sibling constraints.

Let G = (V,E) be a graph to be recognized (input image). For every pair

of vertices u, v ∈ V , if there is an edge E = (u, v) between them, we let

Ru,v denote the attribute vector associated with edge E. The entries of each

such vector represent the set of relations R = {distance, relative orientation,

bearing, scale ratio} between u and v, as shown in Figure 5. For a vertex

u ∈ V , we let N(u) denote the set of vertices v ∈ V such that the directed

edge (u, v) corresponds to a sibling relation. For a relation p ∈ R, we will use

P(u, p) to denote the distribution of values of relation p between vertex u and

all the vertices in the set N(u), i.e., P(u, p) is a histogram encoding the pth

entry of the vectors Ru,v for v ∈ N(u). 2

2 The exception to this rule is the orientation relation. Rather than use absolute

17

relative
orientation

distance

φ

φ bearing

relative
scale

freq.

rel. scale

freq.

bearing

freq.

rel. orient.

freq.

distance

Fig. 5. Forming the geometric signature.

Given two graphs G = (V,E) and G′ = (V ′, E ′) with vertices u ∈ V and

u′ ∈ V ′, we compute the similarity between u and u′ in terms of their respective

distributions P(u, p) and P(u′, p), for all p ∈ R. Now, let dp(u, u′) denote the

Earth Movers Distance (EMD) [37] between two such distributions P(u, p)

and P(u′, p), i.e., dp(u, u′) denotes the minimum amount of work (defined

in terms of displacements of the masses associated with histograms P(u, p)

and P(u′, p)) it takes to transform one distribution into another. The main

advantage of using EMD to compute dp(u, u′) lies in the fact that it subsumes

many histogram distances and permits partial matches in a natural way. This

important property allows the similarity measure to deal with the case where

the masses associated with distributions P(u, p) and P(u′, p) are not equal.

Details of the method are presented in [19]. Given the the values of dp(u, u′)

for all p ∈ R, we arrive at a final node similarity function for vertices u and

u′:

σ(u, u′) = e−
∑

p∈R
dp(u,u′).

orientation, measured with respect to a reference direction, we instead use the angle
from the previous edge in a clockwise ordering of edges emanating from a vertex.

18

4.3 Matching Algorithm

As mentioned in Section 1, our previous work addressed the problem of match-

ing rooted trees, and was unable to match directed acyclic graphs, unable to

accommodate geometric relations among nodes, and unable to preserve hier-

archical and sibling relations. Still, it serves as the starting point for our new

algorithm, and we review it accordingly. The method was a modified version of

Reyner’s algorithm [36,47] for finding the largest common subtree. The main

idea of the algorithm was to cast the structural matching problem as a set

of bipartite graph matching problems. A similarity matrix between the two

graphs’ nodes was constructed with each entry computing the pairwise simi-

larity between a particular node in the first tree and a node in the second tree.

This similarity measure was a weighted combination of the distance between

the two nodes’ TSVs, reflecting the extent to which their underlying subtrees

had similar structure, and the two nodes’ internal attributes. 3

The algorithm is illustrated in Figure 6. The best pairwise node correspon-

dence obtained after a maximum cardinality maximum weight (MCMW) bi-

partite matching is extracted and put into the solution set of correspondences.

In a greedy fashion, the algorithm recursively matches the two resulting pairs

of corresponding forests, at each step computing a maximum matching and

placing the best corresponding pair of nodes in the solution set. The key idea in

casting a graph-matching problem as a number of MCMW bipartite matching

problems is to use the topological signature vectors (TSV) to penalize nodes

with different underlying graph structure. This effectively allows us to discard

3 For shock graphs, each node encoded a set of medial axis, or shock, points and
their similarity was computed based on a Hausdorff distance between these point
sets.

19

Fig. 6. The DAG matching algorithm. (a) Given a query graph and a model graph,
(b) form bipartite graph in which the edge weights are the pair-wise node similari-
ties. Then, (c) compute a maximum matching and add the best edge to the solution
set. Finally, (d) split the graphs at the matched nodes and (e) recursively descend.

the graphs’ edge structure and formulate the problem as an attributed point

matching problem, with a node’s underlying structural context encoded as a

low-dimensional vector node attribute.

To extend this framework to accommodate DAG matching, geometric rela-

tions, and hierarchical/sibling constraint satisfaction, we begin by introducing

some definitions and notations. Let Q = (VQ, EQ) and M = (VM, EM) be the

two DAGs to be matched, with |VQ| = nQ and |VM| = nM. Define d to be the

maximum degree of any vertex in Q and M, i.e., d = max(δ(Q), δ(M)). For

each vertex v, let χ(v) ∈ Rd be the unique topological signature vector (TSV),

introduced in Section 4.1. The bipartite edge weighted graph G(VQ, VM, EG)

is represented as a nQ × nM matrix W whose (q,m)-th entry has the value:

Wq,m = α σ(q,m) + (1 − α) (||χ(q) − χ(m)||) , (6)

20

where σ(q,m) denotes the node similarity between nodes q ∈ Q and m ∈ M,

and α is a convexity parameter that weights the relevance of each term. Using

the scaling algorithm of Gabow and Tarjan [15], we can efficiently compute

the maximum cardinality, maximum weight matching in G with complexity

O(|V ||E|), resulting in a list of node correspondences between Q and M, called

L, that can be ranked in decreasing order of similarity.

This set of node correspondences maximizes the sum of node similarities,

but does not enforce any hierarchical constraints other than the implicit ones

encoded in (||χ(q) − χ(m)||). Thus, instead of using all the node correspon-

dences, we take a greedy approach and assume that only the first one is correct,

and remove the subgraphs rooted at the selected matched pair of nodes. We

now have two smaller problems of graph matching, one for the pair of removed

subgraphs, and another for the two remainders of the original graphs. Both

subproblems can, in turn, be solved by a recursive call of the above algorithm.

The complexity of such a recursive algorithm is O(n3).

It turns out that splitting subgraphs at nodes with high confidence of being a

good correspondence is not a strong enough constraint to guarantee that all

the hierarchical relations are satisfied. Consider, for example, the graphs in

Figure 7. After the first iteration of the matching algorithm, nodes (q5,m5) will

be matched since their similarity is the highest one in L1. In the next iteration,

the subgraph rooted at q5, Q∗, and the subgraph rooted at m5, M∗, as well

as their corresponding complement graphs Qc and Mc, will be recursively

evaluated. 4 When matching Qc against Mc, the best node correspondence

according to the outlined algorithm will be (q4,m3). It is easy to see that this

4 In the recursive call for Q∗ and M∗, nodes q5 and m5 will be in the solution set,
and so they will not be evaluated again.

21

0.8

m

1

m

3

m

2

q

1

q

3

q

2

q

5

q

4

m

5

0.6

0.9

Fig. 7. A case in which the hierarchical constraints between query nodes and model
nodes will be violated after two iterations of the algorithm. Note that only non-zero
Wq,m values are shown.

match violates the hierarchical constraints among nodes because the siblings

q4 and q5 are mapped to m3 and m5, respectively, with m3 a parent of m5.

Another constraint that arises in several domains is that of preserving sibling

relationships. Note that this constraint is not, strictly speaking, a hierarchical

constraint, since there are no hierarchical dependencies among sibling nodes.

While it may be tempting to enforce this constraint when matching, there is a

possibility that a sibling relation is genuinely broken by an occluder. In such

a case, we may not want to enforce this constraint or else we will be unable

to find meaningful matching subgraphs. A compromise solution would be to

penalize the matches that break a sibling relationship so as to favor those that

provide a good set of correspondences while maintaining these relationships

intact.

Figure 8 illustrates the problem. Assuming that (q5,m4) has just been added

to the solution set, the next best correspondence is (q4,m5), which violates a

sibling constraint. To avoid this, we can propagate the information provided

by the previous best match, (q5,m4). This information is used to favor q4’s

22

0.5

m

1

m

2

q

1

q

3

q

2

m

3

0.8

0.9

m

4

q

4

q

5

m

5

0.79

Fig. 8. Preserving sibling relationships by propagating the information from the
previous best match. The matching pair (q4, m3) is chosen over the slightly better
match (q4, m5), because it results in two siblings in the query being matched to two
siblings in the model.

sibling, so that (q4,m3) can be chosen instead. Since we do not want to become

too sensitive to noise in the graph, we shall consider preserving the sibling-

or-sibling-descendant relationships instead of the stricter sibling relationship.

We will refer to this asymmetric relation between nodes as the SSD relation. 5

Note that due to the asymmetry of the relation, the desired propagation of

information will occur only whenever the algorithm proceeds in a top-down

fashion. In the next section, we will see how to promote a top-down node

matching.

Before continuing, let us define the rather intuitive node relationships that we

will be working with. Let G(V,E) be a DAG and let u, v be two nodes in V .

We say that u is a parent of v if there is an edge from u to v. Furthermore,

let u be the ancestor of v if and only if there is a path from u to v. Similarly,

let u be a SSD of v if and only if there exists a parent of u that is also an

ancestor of v.

5 Note that while the sibling relationship is symmetric, the SSD relationship is not,
i.e., if u is the “nephew” of v, then SSD(u,v) is true, but SSD(v,u) is false.

23

The relations defined above will allow us to express the desired constraints.

However, we first need to determine how to make this information explicit,

for it is not immediately available from the adjacency matrices of the graphs.

A simple method is to compute the transitive closure graphs of our graphs.

The transitive closure of a directed graph G = (V,E) is a graph H = (V, F),

with (v, w) in F if and only if there is a path from v to w in G. The transitive

closure can be computed in linear time in the size of the graph O(|V | |E|) [16].

¿From the above definition, it is easy to see that the transitive closure of a

graph is nothing else than the ancestor relation. Computing the SSD relation,

on the contrary, requires a bit of extra work. Let AG be the adjacency matrix

of the DAG, G(V,E), and let TG be the adjacency matrix of the transitive

closure graph of G. By means of these two matrices, we can now compute the

non-symmetric SSD relation by defining SG as the |V | × |V | matrix, where

SG(u, v) =































1 if ∃w∈V {AG(w, v) = 1 & TG(w, u) = 1},

0 otherwise.

(7)

Armed with our new matrices TQ,TM,SQ, and SM, we can update the sim-

ilarity matrix, W, at each iteration of the algorithm, so as to preserve the

ancestor relations and to discourage breaking SSD relations. At the first it-

eration, n = 0, we start with W0 = W. Next, let (q′,m′) be the best node

correspondence selected at the n-th iteration of the algorithm, for n ≥ 0. The

new weights for each entry Wn+1
q,m of the similarity matrix, which will be used

as edge weights in the bipartite graph at iteration n+1, are updated according

24

to:

Wn+1
q,m =























































0 if TQ(q, q′) 6= TM(m,m′),

β Wn
q,m else if SQ(q, q′) 6= SM(m,m′),

Wn
q,m otherwise;

(8)

where 0 ≤ β ≤ 1 is a term that penalizes a pair of sibling nodes in the query

being matched to a pair of non-sibling nodes in the model. It is sufficient to

apply a small penalty to these cases, since the goal is simply to favor siblings

over non-siblings when the similarities of the others are comparable to that of

the siblings.

It is clear that when q′ and m′ are the roots of the subgraphs to match,

the ancestor and SSD relations will be true for all the nodes in the DAG.

Thus, in practice, when matching the q′-rooted and m′-rooted DAGs, we can

avoid evaluating the conditions above. In addition, we know that only a few

weights will change as the result of new node correspondence, and so we only

need to update those entries of the matrix. This can be done efficiently by

designing a data structure that simplifies the access to the weights that are to

be updated. Alternatively, the update step can also be efficiently implemented

with matrices by noticing that the column of AG corresponding to node u tells

us all the parents of u, while the row of TG corresponding to node v give us all

the descendants of v. Thus, given a node pair (q′,m′) and their corresponding

AQ, TQ, AM, and TM, it is straightforward to select and modify only those

entries of Wn
q,m that need to be updated at each iteration of the algorithm.

A careful look at the algorithm as it has been stated so far will reveal that,

25

in general, the first node correspondences found will be those among lower-

level nodes in the hierarchy. We can expect this bottom-up behavior of the

algorithm because the lower-level nodes carry less structural information and

so their weight will be less affected by the structural difference of the graphs

rooted at them. Therefore, nodes at the bottom of the hierarchy will tend to

have high similarity values and consequently, they will be chosen to split the

graphs, creating small DAG’s with few constraints on the nodes.

A solution to this problem is to redefine the way we choose the best edge from

the bipartite matching. Instead of simply choosing the edge with greatest

weight, we will also consider the order 6 of the DAG rooted at the matched

nodes to select the pair of nodes that have a large similarity weight and are

also roots of large subgraphs. We define the mass, m(v), of node v as the order,

n(T), of the DAG rooted at v. For a given graph G(V,E), the |V |-dimensional

mass vector, MG, in which each of its dimensions is the mass m(v) of a distinct

v ∈ V , can be computed from the transitive closure matrix, TG, of the graph

by MG = TG × ~1, where ~1 is the |V |-dimensional vector whose elements are

all equal to 1. Thus, MG is a vector in which each element MG(v), for v ∈ V ,

is the number of nodes in the DAG rooted at v.

Unfortunately, the mass does not give us enough information about the depth

of the subgraph rooted at a node since, for example, the path of n nodes

has the same mass as the star of n nodes. A better idea is to consider the

cumulative mass, m̂. Let m̂(v) be defined as the sum of all the masses of the

nodes of the DAG rooted at v. Thus, the cumulative mass vector will be given

6 Here we follow the convention in the Graph Theory literature that considers the
order of a graph to be the number of nodes in the graph, and the size of the graph
to be the number of edges in the graph.

26

by M̂G = TG ×MG, which can also be written as M̂G = T2
G ×~1. This vector

can then be used to obtain a relative measure of how tall and wide the rooted

subgraphs are with respect to the graph they belong to, by simply normalizing

the masses. Let M̃G be the normalized cumulative mass vector given by

M̃G =
M̂G

max v ∈ V
{

M̂G(v)
} , (9)

where the normalizing factor will correspond to the cumulative mass of the

node whose in-degree is zero —a root— and has the greatest cumulative mass

in G.

The cumulative mass is exactly the piece of information we need, since it

should be easy to see that for all the trees with n nodes, the star is the one

with smallest cumulative mass, while the path is the one with the greatest.

Hence, the cumulative mass, m̂, for the root of a tree of order n satisfies

2n − 1 ≤ m̂ ≤ 1
2
n(n + 1). This measure is a good indicator of how deep and

wide a subtree is, and so provides a means to find a compromise between the

node similarities and their positions in the graph.

We can then promote a top-down behavior in the algorithm by selecting the

match (q,m)+ from the list, L, returned by each MCMW bipartite matching,

with the maximum convex sum of the similarity and the relative mass of the

matched nodes,

(q,m)+ = argmax(q,m)∈L

{

γWq,m + (1 − γ) max(M̃Q(q), M̃M(m))
}

, (10)

where 0 ≤ γ ≤ 1 is a real value that controls the influence of the relative

cumulative mass in selecting the best match. Since we want to promote a top-

down association of nodes without distorting the actual node similarities, we

27

0.77 | 0.72

m

1

m

2

q

1

q

4

q

2

m

3

0.8 | 0.63

0.97 | 0.69

m

6

q

5

q

8

m

8

0.79 | 0.59

q

3

q

6

q

7

q

10

q

9

q

11

m

4

m

5

m

7

0.98 | 0.7

0.92 | 0.66

34

11
 14
 5

1

1
 1
 1

5
 3
 1

23

1
14

3
5

1
1
1

Fig. 9. An example in which γ < 1 can promote a top-down behavior in the al-
gorithm. The cumulative mass of each node is shown in blue. Edge weights are
computed according to Equation 10, for γ = 1 and γ = 0.7. For the given set of
node similarities and γ = 1, the best node correspondence at this iteration is the
pair of leaves (q6, m4), whereas for γ = 0.7, the best node correspondence is the
pair of non-terminal nodes (q4, m2).

suggest γ to be in the interval [0.7, 0.9]. In Figure 9, we compare the sequences

of graph splits using different values for γ. When γ = 1, we obtain the original

equation in [39] that, as can be seen in the figure, tends to produce a bottom-

up behavior of the algorithm.

Given the set of node correspondences between two graphs, the final step is

to compute an overall measure of graph similarity. The similarity of the query

graph to the model graph is given by

σΦ(Q,M) =
(nQ + nM)

∑

(q,m)+∈Φ Wq,m

2nQnM

, (11)

where nQ and nM are the orders of the query graph and the model graph,

respectively.

The graph similarity is given by a weighted average of the number of matched

28

nodes in the query and in the model, where the weights are given by the node

similarity of each matched node pair. If all the query nodes are matched with

similarity 1, i.e., their attributes are identical, we have
∑

(q,m)+∈Φ Wq,m = nQ,

and so σΦ(Q,M) = 1
2
(nQ

nM
+ 1). Since all query nodes have been matched, we

know that nM ≥ nQ, and so σΦ(Q,M) will be one when all the model nodes

are mapped, and less than one otherwise. Therefore, the graph similarity is

proportional to the quality of each pair of node correspondences, and inversely

proportional to the number of unmatched nodes, both in the query and in the

model. Hence, a model that contains the query as a relatively small subgraph

is not as good a match as a model for which most of nodes match those of the

query graph, and vice versa.

Finally, it should be noted that the relative weighting of the topological and

geometric terms in the bipartite graph edge weights need not be constant for all

edges. Since each edge spans an image node and a model node, the model can

be used to define an a priori weighting scheme that is edge dependent. Thus, if

portions of the model were more geometrically constrained (e.g., articulation

was prohibited), those model nodes could have a higher weighting on their

geometric similarity component. Similarly, portions of the model that were

less constrained could have a higher weighting on the topological similarity

component. This is a very powerful feature of the algorithm, allowing the

incorporation of local model constraints into the matching algorithm.

The final algorithm is shown in Figure 10. The first step of the algorithm is to

compute a node similarity matrix, the transitive closure matrices, the sibling

matrices, and the node TSVs for both graphs. Assuming a linear algorithm for

the pairwise node similarities, the former matrix can be computed in O(n3).

The other matrices can, in turn, be obtained in linear time and in quadratic

29

procedure isomorphism(Q,M)
Φ(Q, M)← ∅ ;solution set
compute the nQ × nM weight matrix W0 from Eq. 6
TQ = compute transitive closure matrix from AQ

TM = compute transitive closure matrix from AM

SQ = compute SSD matrix from AQ and TQ

SM = compute SSD matrix from AM and TM

compute the TSV of each nonterminal node in Q and M

unmark all nodes in Q and in M

call match(root(Q),root(M))
return(σΦ(Q, M))

end

procedure match(u,v)
do

{
let Qu ← u rooted unmarked subgraph of Q

let Mv ← v rooted unmarked subgraph of M

L← max cardinality, max weight bipartite matching between
unmarked nodes in G(VQu

, VMv
) with weights from Wn+1 (see[15])

(u′, v′)← choose max weight pair in L from Eq. 10
Φ(Q, M)← Φ(Q, M) ∪ {(u′, v′)}
update the similarity matrix Wn+1 according to Eq. 8
mark u′

mark v′

call match(u′,v′)
call match(u,v)
}

while (Qu 6= ∅ and Mv 6= ∅)

Fig. 10. Algorithm for Matching Two Directed Acyclic Graphs

time, respectively. At each iteration of the algorithm, we have to compute a

MCMW bipartite matching, sort its output, and update the similarity ma-

trix. The complexity at each step is then determined by that of the bipartite

matching algorithm, O(|V ||E|), since it is the most complex operation of the

three. The number of iterations is bounded by min(nQ, nM), and so the overall

complexity of the algorithm is O(n3). Hence, we have provided the algorithm

with important properties for the matching process while maintaining its orig-

inal complexity. An example of the blob correspondence computed over two

hand exemplars is shown in Figure 11.

30

Fig. 11. Example Correspondence Computed between Two Blob Graphs

5 Experiments

We evaluate our framework on the domain of view-based 3-D object recog-

nition where the objective is to choose the right object (identification) for a

particular query view and also to determine its correct pose (pose estimation).

To provide a comprehensive evaluation, we used two popular image libraries;

the Columbia University COIL-20 (20 objects, 72 views per object) [30] and

the ETH Zurich ETH-80 (8 categories, 10 exemplars per category, 41 views

per exemplar) [22]. Sample views of objects from these two libraries are shown

in Figure 12. Note that in the ETH-80 library, some categories have very sim-

ilar shape, differing only in their appearance. Thus, the horse, dog, and cow

categories were collapsed to form a 4-legged animal category, the apple and

31

Fig. 12. Views of sample objects from the Columbia University Image Library
(COIL-20) and the ETH Zurich (ETH-80) Image Set.

tomato categories were collapsed to form a spherical fruit category, and the

two car instance categories were collapsed to form a single car category.

We applied the following procedure to each database to evaluate the proposed

framework. We initially removed the first entry from the database, used it as

a query, and computed its similarity with each of the remaining views in the

database. We then returned the query back to the database and repeated the

same process for each of the the other database entries. This process results in

a n × n similarity matrix, where the entry (i, j) indicates how similar views i

and j are. For a particular query, we classify its identification as correct if the

maximum similarity is obtained with a view which belongs to the same object

as the query. Consequently, pose estimation is correct if view i of object j, vi,j

matches most closely with vn,j, where n is one of i’s neighboring views.

Our overall recognition rates for COIL-20 and ETH-80 datasets are 93.5% and

97.1%, respectively. We show a part of the matching results in Table 1. Upon

investigation as to why the COIL-20 dataset yields poorer performance, we

found that most of the mismatches were between three different car objects:

column three of the first row, column one of the second row, and column four

of the fourth row, as shown in the left of Figure 12. Despite being different

32

Query Top 9 Matched Objects

Table 1
Top matched models are sorted by the similarity to the query.

objects with different appearance, their coarse shape structure is similar and

their blob graphs are indeed similar. If we group these three exemplars into

the same category and count these matches as correct, our recognition rate

rises to 96.5%. Our recognition framework is clearly suited to coarse shape

categorization as opposed to exemplar matching.

For pose estimation, we observe that in all but 9.8% and 14.6% of the COIL-

20 and ETH-80 experiments, respectively, the closest match selected by our

algorithm was a neighboring view. Note that if the closest matching view was

not an immediate neighbor drawn from the same exemplar, the match was

deemed incorrect, despite the fact that the matching view might be a neigh-

33

boring view of a different exmeplar from the same category. This is perhaps

overly harsh, as reflected by the 14.6% results, but view alignment between

exemplars belonging to the same category was not provided. These results can

be considered worst case for several additional reasons. Given the high simi-

larity among neighboring views, it could be argued that our pose estimation

criterion is overly harsh, and that perhaps a measure of “viewpoint distance”,

i.e., “how many views away was the closest match” would be less severe. In

any case, we anticipate that with fewer samples per object, neighboring views

would be more dissimilar, and our matching results would improve. More im-

portantly, many of the objects are rotationally symmetric, and if a query has

an identical view elsewhere in the dataset, that view might be chosen (with

equal similarity) and scored as an error.

To demonstrate the framework’s robustness, we performed five perturbation

experiments on both datasets. The experiments were identical to the experi-

ments above, except that we randomly chose a node, v, in the query graph,

if the number of nodes in the directed acyclic subgraph rooted at v was less

than 10% of the number of nodes in the original graph, we deleted the rooted

subgraph from the query. We then repeated the same process for maximum

ratios of 20%, 30%, 40%, and 50%. The results are shown in Table 2, and

reveal that the error rate increases gracefully as a function of increased per-

turbation. Although not a true occlusion experiment, which would require

that we replace the removed subgraph with an occluder subgraph, these re-

sults demonstrate the framework’s ability to match local structure, a property

essential for handling occlusion.

34

Perturbation 10% 20% 30% 40% 50%

Recognition rate (COIL-20) 91.2% 89.5% 87.3% 83.7% 78.6%

Recognition rate (ETH-80) 94.2% 91.5% 89.3% 84.7% 82.6%

Table 2
Recognition rate as a function of increasing perturbation in the form of missing data.
Percentages indicate how much of the query graph was removed prior to matching.

6 Limitations

Both the representation and matching components of our integrated frame-

work have limitations. Since it is based on image gradients, the blob and ridge

decomposition does not perform well in the presence of textured surfaces, and

spurious and missing blobs may result. Although the matching algorithm can

accommodate both noise and occlusion, it does rely on there being a sufficient

number of one-to-one correspondences to discriminate the correct model from

other models. If blobs are highly over- or under-segmented, matching may fail

as too few one-to-one correspondences may exist.

7 Conclusions

Matching two images whose similarity exists at the coarse shape level is critical

to object categorization. Blobs and ridges provide an ideal multiscale part

vocabulary for coarse shape modeling which, when combined with an array

of geometric relations in the form of a graph, yield a powerful categorical

shape representation. provide a powerful, hierarchical characterization of an

object’s coarse shape. Our inexact graph matching framework exploits both

the topological as well as the geometrical relations in a directed acyclic graph

to yield an efficient algorithm for coarse-to-fine shape matching. We have

35

demonstrated the generality of the framework by applying it to three different

domains (without domain-specific tuning), with very encouraging results in

each domain.

8 Acknowledgements

The authors gratefully acknowledge the support of the ONR, NSERC, NSF,

CITO, NSERC-IRIS, CITO, and MD Robotics.

References

[1] G. Agin and T. Binford. Computer description of curved objects. IEEE

Transactions on Computers, C-25(4):439–449, 1976.

[2] T. Binford. Visual perception by computer. In Proceedings, IEEE Conference

on Systems and Control, Miami, FL, 1971.

[3] L. Bretzner and T. Lindeberg. Qualitative multi-scale feature hierarchies for

object tracking. Journal of Visual Communication and Image Representation,

11:115–129, 2000.

[4] R. Brooks. Model-based 3-D interpretations of 2-D images. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 5(2):140–150, 1983.

[5] Peter J. Burt. Attention Mechanisms for Vision in a Dynamic World. In

Proceedings of the International Conference on Pattern Recognition, Vol.1,

pages 977–987, The Hague, The Netherlands, 1988.

[6] S. D. Cohen and L. J. Guibas. The earth mover’s distance under transformation

sets. In Proceedings, 7th International Conference on Computer Vision, pages

1076–1083, Kerkyra, Greece, 1999.

36

[7] J. Crowley and A. Parker. A representation for shape based on peaks and ridges

in the difference of low-pass transform. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 6(2):156–169, March 1984.

[8] James L. Crowley. A Multiresolution Representation for Shape. In Azriel

Rosenfeld, editor, Multiresolution Image Processing and Analysis, pages 169–

189. Springer Verlag, Berlin, 1984.

[9] James L. Crowley and Arthur C. Sanderson. Multiple Resolution

Representation and Probabilistic Matching of 2–D Gray–Scale Shape. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 9(1):113–121,

January 1987.

[10] M. Fatih Demirci, A. Shokoufandeh, S. Dickinson, Y. Keselman, and

L. Bretzner. Many-to-many matching of scale-space feature hierarchies using

metric embedding. In Proceedings, Scale Space Methods in Computer Vision,

4th International Conference, pages 17–32, June 2003.

[11] M. Fatih Demirci, A. Shokoufandeh, S. Dickinson, Y. Keselman, and

L. Bretzner. Many-to-many feature matching using spherical coding of directed

graphs. In Proceedings, 8th European Conference on Computer Vision, pages

332–335, May 2004.

[12] S. Dickinson, M. Pelillo, and R. Zabih. Special section on graph algorithms

and computer vision. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 23(10), October 2001.

[13] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from

few training examples. In Workshop on Generative-Model Based Vision, 2004.

[14] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by

unsupervised scale-invariant learning. In Proceedings of the IEEE Conference

37

on Computer Vision and Pattern Recognition, volume 2, pages 264–271, june

2003.

[15] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph

matching problems. Journal of the ACM, 38:815–853, 1991.

[16] A. Goralcikova and V. Konbek. A reduct and closure algorithm for graphs.

Mathematical Foundations of Computer Science, Lecture Notes in Computer

Science 74:301–307, 1979.

[17] Martin Jägersand. Saliency Maps and Attention Selection in Scale and Spatial

Coordinates: An Information Theoretic Approach. In Proceedings of the 5th

International Conference on Computer Vision, pages 195–202, Boston, MA,

June 1995.

[18] Y. Keselman and S. Dickinson. Generic model abstraction from examples. IEEE

PAMI, 27(7), 2005.

[19] Y. Keselman, A. Shokoufandeh, M. Demirci, , and S. Dickinson. Many-to-many

graph matching via metric embedding. In Proceedings, IEEE CVPR, Madison,

WI, 2003.

[20] I. Laptev and T. Lindeberg. Tracking of multi-state hand models using particle

filtering and a hierarchy of multi-scale image features. In Proc. Scale-Space’01,

Vancouver, Canada, Jul. 2001.

[21] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Learning local affine-

invariant part models for object class recognition. In Workshop on Learning,

Snowbird, Utah, 2004.

[22] B. Leibe and B. Schiele. Analyzing appearance and contour based methods for

object categorization. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Madison, WI, June 2003.

38

[23] Bastian Leibe and Bernt Schiele. Analyzing appearance and contour based

methods for object categorization. In CVPR (2), pages 409–415, 2003.

[24] T. Lindeberg. Edge detection and ridge detection with automatic scale selection.

Int. J. of Computer Vision, 30:117–154, 1998.

[25] T. Lindeberg. Feature detection with automatic scale selection. Int. J. of

Computer Vision, 30:77–116, 1998.

[26] Tony Lindeberg. Detecting Salient Blob–Like Image Structures and Their

Scales With a Scale–Space Primal Sketch—A Method for Focus–of–Attention.

International Journal of Computer Vision, 11(3):283–318, December 1993.

[27] Stephane Mallat and Wen Liang Hwang. Singularity detection and processing

with wavelets. IEEE Transactions on Information Theory, 38(2):617–643,

March 1992.

[28] D. Marr and H. Nishihara. Representation and recognition of the spatial

organization of three-dimensional shapes. Royal Society of London, B 200:269–

294, 1978.

[29] Ivan Marsic. Data–Driven Shifts of Attention in Wavelet Scale Space. Technical

Report CAIP–TR–166, CAIP Center, Rutgers University, Piscataway, NJ,

September 1993.

[30] H. Murase and S. Nayar. Visual learning and recognition of 3-D objects from

appearance. International Journal of Computer Vision, 14:5–24, 1995.

[31] R. Nevatia and T. Binford. Description and recognition of curved objects.

Artificial Intelligence, 8:77–98, 1977.

[32] Bruno Olshausen, Charles Anderson, and David Van Essen. A Neurobiological

Model of Visual Attention and Invariant Pattern Recognition Based on Dynamic

Routing of Information. Journal of Neurosciences, 13(11):4700–4719, November

1992.

39

[33] M. Pelillo. Matching free trees, maximal cliques, and dynamic monotone game

dynamics. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(11):1535–1541, November 2002.

[34] M. Pelillo, K. Siddiqi, and S. Zucker. Matching hierarchical structures using

association graphs. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 21(11):1105–1120, November 1999.

[35] Rajesh P.Ñ. Rao, Gregory J. Zelinsky, Mary M. Hayhoe, and Dana H. Ballard.

Modeling Saccadic Targeting in Visual Search. In D. Touretzky, M. Mozer, and

M. Hasselmo, editors, Advances in Neural Information Processing Systems 8,

pages 830–836. MIT Press, Cambridge, MA, 1996.

[36] S. W. Reyner. An analysis of a good algorithm for the subtree problem. SIAM

J. Comput., 6:730–732, 1977.

[37] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric

for image retrieval. Int. J. of Computer Vision, 40(2):99–121, 2000.

[38] Thomas B. Sebastian, Philip N. Klein, and Benjamin B. Kimia. Recognition of

shapes by editing shock graphs. In IEEE International Conference on Computer

Vision, pages 755–762, 2001.

[39] A. Shokoufandeh and S. Dickinson. A unified framework for indexing and

matching hierarchical shape structures. In Proceedings, 4th International

Workshop on Visual Form, Capri, Italy, May 28–30 2001.

[40] A. Shokoufandeh, D. Macrini, S. Dickinson, K. Siddiqi, , and S. Zucker. Indexing

hierarchical structures using graph spectra. IEEE PAMI, 27(7), 2005.

[41] A. Shokoufandeh, I. Marsic, and S. Dickinson. View-based object recognition

using saliency maps. Image and Vision Computing, 17(5-6):445–460, 1999.

[42] K. Siddiqi, A. Shokoufandeh, S. Dickinson, and S. Zucker. Shock graphs and

shape matching. International Journal of Computer Vision, 30:1–24, 1999.

40

[43] Eero P. Simoncelli, William T. Freeman, Edward H. Adelson, and David J.

Heeger. Shiftable Multiscale Transforms. IEEE Transactions on Information

Theory, 38(2):587–607, March 1992.

[44] Barnabas Takac̀s and Harry Wechsler. A Dynamic and Multiresolution Model of

Visual Attention and Its Application to Facial Landmark Detection. Computer

Vision and Image Understanding, (in press).

[45] J. Triesch and C. von der Malsburg. Robust classification of hand postures

against complex background. In Proc. Int. Conf. on Face and Gesture

Recognition, pages 170–175, Killington, Vermont, Oct. 1996.

[46] J. Tsotsos. An inhibitory beam for attentional selection. In L. Harris and

M. Jenkin, editors, Spatial Vision in Humans and Robots. Cambridge University

Press, 1993.

[47] Rakesh Verma and Steven W. Reyner. An analysis of a good algorithm for

the subtree problem, corrected. SIAM Journal on Computing, 18(5):906–908,

October 1989.

[48] Laurenz Wiskott, Jean-Marc Fellous, Norbert Krüger, and Christoph von

der Malsburg. Face Recognition by Elastic Bunch Graph Matching. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 19(7):775–779, July

1997.

41

